bitpie官方app|ammonia
氨气_百度百科
度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心氨气播报讨论上传视频氮的氢化物收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。氨气(Ammonia),是一种无机化合物,化学式为NH3,分子量为17.031,标准状况下,密度 0.771g/L,相对密度0.5971(空气=1.00)。是一种无色、有强烈的刺激气味的气体。氨气能使湿润的红色石蕊试纸变蓝,能在水中产生少量氢氧根离子,呈弱碱性。在常温下加压即可使其液化(临界温度132.4℃,临界压力11.2兆帕,即112.2大气压),沸点-33.5℃,也易被固化成雪状固体,熔点-77.75℃,溶于水、乙醇和乙醚。在高温时会分解成氮气和氢气,有还原作用。有催化剂存在时氨气可被氧化成一氧化氮。氨气常用于制液氮、氨水、硝酸、铵盐和胺类等。氨气可由氮和氢直接合成而制得,能灼伤皮肤、眼睛、呼吸器官的粘膜,人吸入过多,能引起肺肿胀,以至死亡 [1]。 [12]氨气被列入《危险化学品名录》, [9]并按照《危险化学品安全管理条例》管控。 [10]中文名氨气 [11]外文名Ammonia [11]别 名氨 [11]化学式NH3 [4]分子量17.031 [11]CAS登录号7664-41-7 [11]EINECS登录号231-635-3 [11]熔 点-77.7 ℃(101 KPa)沸 点-33.5 ℃(101 KPa)水溶性极易溶于水密 度0.771 kg/m³(20℃,101 KPa)外 观无色有刺激性恶臭的气味 [4]闪 点11ºC安全性描述S26;S7;S45;S36/37/39;S16;S9;S61 [11]危险性符号F [11]危险性描述R10;R11;R36/37/38;R39/23/24/25 [11]UN危险货物编号1219 [11]目录1研究简史2物质结构3理化性质▪物理性质▪化学性质4应用领域5安全措施▪急救措施▪泄漏处理▪消防措施▪危害防治▪健康危害6毒理资料7检验方法8衍生物▪联氨▪羟氨研究简史播报编辑自古以来,人们就知道氨的气味。18世纪,著名化学家约瑟夫·布莱克(苏格兰)、彼得·沃尔夫(爱尔兰)、卡尔·威廉·舍勒(瑞典/德国)和约瑟夫·普里斯特利(英格兰)发现空气中的氮能被碳化钙固定而生成氰氨化钙,氰氨化钙与过热水蒸汽反应制的氨。1785年,法国化学家克劳德·路易斯·贝索莱测定了它的元素组成。 [8]由于氮气的化学性质很不活泼,以氮气和氢气为原料合成氨的工业化生产曾是一个较难的课题。1909年,德国化学家哈伯(E.Haber,1868一1934)经过反复的实验研究后发现,在500-600℃、17.5~20.0 MPa和锇为催化剂的条件下,反应后氨的含量可达到6%以上,具备了工业化生产的可能性。为了把哈伯合成氨的实验室方法转化为规模化的工业生产,德国工程师博施(C. Bosch,1874一1940)改进了哈伯首创的高压合成氨,找到了合适的氧化铁型催化剂,使合成氨生产工业化,称为"哈伯--博施法"。1913年,一个年产量7000吨的合成氨工厂建成并投产,实现了合成氨的工业化生产。从此,合成氨成为化学工业中迅速发展的重要领域。由于合成氨工业生产的实现和相关研究对化学理论与技术发展的推动,哈伯和博施都获得了诺贝尔化学奖。合成氨是人类科学技术发展史上的一项重大成就,在很大程度上解决了地球上因粮食不足而导致的饥饿问题,是化学和技术对社会发展与进步的巨大贡献。 [7]2020年,全球氨生产能力为2.24亿吨。实际产量为1.87亿吨,在全球生产的化学品中排名第九。 [8]物质结构播报编辑氮原子有5个价电子,其中有3个未成对,当它与氢原子化合时,每个氮原子可以和3个氢原子通过极性共价键结合成氨分子。氨气分子球棍模型从氨的结构来看,氨分子里的氮原子还有一个孤对电子,可以结合成质子,显示碱性;可作为Lewis碱,形成配位化合物(如加合物);氨分子上有三个活性氢,可以被取代而发生取代反应;氨分子的空间结构是三角锥型,极性分子。 [4]理化性质播报编辑物理性质氨气在标准状况下的密度0.771g/L临界点132.4℃蒸汽压506.62 kPa(4.7℃)熔点-77.7℃ (常压)沸点-33.5℃ (常压)溶解性极易溶于水(体积:1:700或质量:53.97 g/100 g)自燃点651.1℃临界压力11.2 MPa临界体积72.47 cm³/mol临界密度0.235 g/cm³临界压缩系数0.242液体热膨胀系数25℃时 0.00251/℃表面张力19.75×10-3 N/m,19.75 dyn/cm汽化热1336.97 kJ/kg,574.9 BTU/1 b熔化热332.16 kJ/kg,142.83 BTU/1 b气体定压比热容2.112 kJ/(kg·K),0.505 BTU/(1 b·R)气体定容比热容1.624 kJ/(kg·K),0.388 BTU/(1 b·R)气体比热容比1.301气体摩尔熵192.67 J/(mol·K )气体摩尔生成焓-45.9 kJ/mol气体黏度101.15×10-7 Pa·s,101.15 μPa液体黏度0.135 mPa ·s燃烧热25℃(77 ℉)气态时 18603.1 kJ/kg,7999.3 BTU/1 b空气中爆炸低限含量16.1%空气中爆炸高限含量25% [1]化学性质1.与水反应在常温,常压下,一体积的水中能溶解700体积的氨。氨在水中的反应可生成一水合氨:一水合氨不稳定受热分解生成氨和水: [7]喷泉实验喷泉实验在干燥的圆底烧瓶里充满氨气,用带有玻璃管和滴管(滴管里预先吸入水)的塞子塞紧瓶口。立即倒置烧瓶,使玻璃管插入盛水的烧杯里(水里事先加入少量的酚酞试液),把实验装置装好后。打开橡皮管的夹子,挤压滴管的胶头,使少量的水进入烧瓶,可以观察到酚酞溶液变红并且在尖嘴导管口形成喷泉。 实验的基本原理是加水使烧瓶内大部分氨气溶于水,在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,从而在导管口形成喷泉。 [7]2.与酸反应铵氨与酸作用可得到铵盐,铵盐是由铵根离子()和酸根离子组成的化合物。一般为无色晶体,易溶于水,是强电解质。从结构来看,和是等电子体。的半径比的大,而且接近于,因此具有+1价碱金属离子的性质,在晶体结构和溶解度方面非常相似,除高氯酸铵和酒石酸氢铵外大多数铵盐都溶于水。但由于是由5个原子组成的,与一般碱金属离子性质也有所差别(如易分解性·,水解性,热稳定性差)。 [4]反应对象反应方程式氨与硝酸NH3+HNO3=NH4NO3氨与硫酸2NH3+H2SO4=(NH4)2SO4氨与盐酸NH3+HCl=NH4Cl氨与磷酸3NH3+H3PO4=(NH4)3PO4氨与乙酸NH3+CH3COOH=CH3COONH4氨与碳酸NH3+H2CO3=NH4HCO3碳酸氢铵不稳定受热分解3.氧化还原反应氨分子中的N原子的氧化数为-3,为氮的最低氧化态,在一定条件下可以被氧化形成较高氧化数的物质,产物中以N2为主。如,在热的铂丝催化下与氧气反应、在纯氧中燃烧、用氯或溴处理,都可将其氧化:另外,氨气还能将金属氧化物还原为金属单质,如在加热条件下氨气会与氧化铜发生反应: [4]4.加合反应加合反应(氨合反应):作为Lewis碱,氨以其分子中的孤对电子与许多金属离子(Lewis酸)作用形成氨配离子,如[Ag(NH3)2]+、[Cu(NH3)4]2+、[Cr(NH3)6]2+、[Co(NH3)6]3+和[Pt(NH3)4]2+等,使许多难溶化合物溶解。氨与具有空轨道的Lewis酸反应 [4]此外,氨还可与具有空轨道的Lewis酸直接作用形成相应的加合物,如: [4]5.取代反应取代反应(又称氨解反应):从两方面考虑,把NH3当作三元酸,其氢原子可依次被取代分别生成氨基、亚氨基和氮化物的衍生物,取代氢的基团可为金属、非金属或其他基团:另一方面,也可以看作以氨基、亚氨基取代其他化合物中的原子或基团生成的产物: [4]应用领域播报编辑1.在电子工业中,高纯氨用于模集成电路减压或等离子体CVD,以生长二氧化硅膜锅炉给水pH值调节剂,氨用来中和给水中的碳酸,提高pH值,减缓给大规水中二氧化碳的腐蚀。也是锅炉停炉保护剂,对锅炉内有少量存水不能放出的锅炉也有较好的保护效果。3.在食品工业中用作碱性剂、酵母养料、食用色素稀释剂、冻豆腐制造用剂和溶剂。也可用于可可粉及含糖可可粉、可可豆粉、可可液块和可可油饼,食用酪蛋白酸盐的加工,用量按GMP。4.在化工、科研等领域用作标准气、配制标准混合气、物性测定、硅或氧化硅的氮化等。在无机化学工业中用于铵盐、硝酸、氰化氢、肼、羟胺、硫胺、硝胺、磷胺、尿素等的制造。在有机化学工业中可将液氨与烷基氯或醇反应制备烷基胺,如1,2-二氯乙烷反应制取乙二胺,与己二腈反应制取己二胺,与丙烯反应制取丙烯腈等。其他还可用于吗啉、哌嗪、乌洛托品、皮考啉,2-甲基-5-乙烯基吡啶等的制造和用作冷冻剂等,氨还可以作为生物燃料来提供能源。 [6]5.用于制造氨水和液氨,氨水的用途非常广泛,如,可以检验HCl等气体的存在,与铝盐溶液反应制氢氧化铝。配制银氨溶液检验有机物分子中醛基的存在等。液氨可用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。在国防工业中,用于制造火箭、导弹的推进剂。可用作有机化工产品的氨化原料,因为液氨在气化后转变为氨气,能吸收大量的热,被誉为“冷冻剂”,同时液氨具有一定的杀菌作用,所以在家禽养殖业中,被用于杀菌和降温制冷作用。液氨还可用于纺织品的丝光整理等。安全措施播报编辑急救措施如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20 min以上。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。对接触的皮肤和头发用大量清水冲洗15 min以上。冲洗皮肤和头发时要注意保护眼睛 [3]。病人复苏应立即将患者转移出污染区,至空气新鲜处,对病人进行复苏三步法(气道、呼吸、循环)。气道:保证气道不被舌头或异物阻塞。呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气。循环:检查脉搏,如没有脉搏应施行心肺复苏。初步治疗氨中毒无特效解毒药,应采用支持治疗。如果接触浓度≥500 ppm,并出现眼刺激、肺水肿的症状,应立即就医。对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。如果呼吸窘迫,应考虑进行气管插管。如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。误服者给饮牛奶,有腐蚀症状时忌洗胃 [3]。泄漏处理氨对人体生理的影响氨无色具有强烈的刺激臭味,对人体有较大的毒性。氨气慢性中毒会引起慢性气管炎、肺气肿等呼吸系统病,急性氨中毒反映在咳嗽不止、憋气等。(1) 少量泄漏。撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。(2) 大量泄漏。疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻转泄漏的容器以避免液氨漏出。要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备清洗消毒 [3]。消防措施在贮存及运输使用过程中,如发生火灾应采取以下措施:(1)报警:迅速向当地119消防、政府报警。报警内容应包括:事故单位、事故发生的时间、地点、化学品名称、危险程度、有无人员伤亡以及报警人姓名、电话。(2)隔离、疏散、转移遇险人员到安全区域,建立500 m左右警戒区,并在通往事故现场的主要干道上实行交通管制,除消防及应急处理人员外,其他人员禁止进入警戒区,并迅速撤离无关人员。(3)消防人员进入火场前,应穿着防化服,佩戴正压式呼吸器。氨气易穿透衣物,且易溶于水,消防人员要注意对人体排汗量大的部位,如生殖器官、腋下、肛门等部位的防护。(4)小火灾时用干粉或CO2灭火器,大火灾时用水幕、雾状水或常规泡沫。(5)储罐火灾时,尽可能远距离灭火或使用遥控水枪或水炮扑救。(6)切勿直接对泄漏口或安全阀门喷水,防止产生冻结。(7)安全阀发出声响或变色时应尽快撤离,切勿在储罐两端停留 [3]。危害防治(1)氨作业工人应进行作业前体检,患有严重慢性支气管炎、支气管扩张、哮喘以及冠心病者不宜从事氨作业。(2)工作时应选用耐腐蚀的工作服、防碱手套、眼镜、胶鞋、防毒口罩,防毒口罩应定期检查,以防失效。(3)在使用氨水作业时,应随身备有清水,以防万一;在氨水运输过程中,应随身备有3%硼酸液,以备急救冲洗;配制一定浓度氨水时,应戴上风镜;使用氨水时,作业者应在上风处,防止氨气刺激面部;操作时要严禁用手揉擦眼睛,操作后洗净双手。(4)预防皮肤被污染,可选用硼酸油膏。(5)配备良好的通风排气设施、合适的防爆、灭火装置。(6)工作场所禁止饮食、吸烟、明火、火花。(7)应急救援时,必须佩带空气呼吸器。(8)发生泄漏时,将泄漏钢瓶的渗口朝上,防止液态氨溢出。(9)加强生产过程的密闭化和自动化,防止跑、冒、滴、漏。(10)使用、运输和贮存时应注意安全,防止容器破裂和冒气。(11)现场安装氨气监测仪,及时发现报警 [3]。健康危害吸入氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。吸入是接触的主要途径,吸入氨气后的中毒表现主要有以下几个方面。轻度吸入氨中毒表现有鼻炎、咽炎、喉痛、发音嘶哑。氨进入气管、支气管会引起咳嗽、咯痰、痰内有血。严重时可咯血及肺水肿,呼吸困难、咯白色或血性泡沫痰,双肺布满大、中水泡音。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。中毒情况症状急性轻度中毒咽干、咽痛、声音嘶哑、咳嗽、咳痰,胸闷及轻度头痛,头晕、乏力,支气管炎和支气管周围炎。急性中度中毒上述症状加重,呼吸困难,有时痰中带血丝,轻度发绀,眼结膜充血明显,喉水肿,肺部有干湿性哕音。急性重度中毒剧咳,咯大量粉红色泡沫样痰,气急、心悸、呼吸困难,喉水肿进一步加重,明显发绀,或出现急性呼吸窘迫综合症、较重的气胸和纵隔气肿等。严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度的氨可直接影响肺毛细血管通透性而引起肺水肿,可诱发惊厥、抽搐、嗜睡、昏迷等意识障碍。个别病人吸入极浓的氨气可发生呼吸心跳停止。 [2]皮肤和眼睛接触低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。急性轻度中毒:流泪、畏光、视物模糊、眼结膜充血。皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。毒理资料播报编辑急性毒性LD50350 mg/kg(大鼠经口)LC504230 ppm(小鼠吸入,1 h)LC502000 ppm(大鼠吸入,4 h)刺激性家兔经眼100 mg,重度刺激亚急性与慢性毒性——大鼠,20 mg/m3,每天24 h,84 d,或每天5~6 h,7个月,出现神经系统功能紊乱。致突变性微生物致突变性大肠杆菌1500 ppm(3 h)细胞遗传学分析大鼠吸入19800 μg/m3(16周)生态毒性LC50>3.58 mg/L(24 h)(彩鲑,已受精的)LC50>3.58 mg/L(24 h)(彩鲑,幼年的)LC500.068 mg/L(24 h)(彩鲑,85天的鱼苗)LC500.097 mg/L(24 h)(彩鲑,成年的)LC5024 mg/L(48 h)(水蚤) [6]检验方法播报编辑中和法:用玻璃棒蘸浓盐酸靠近,产生白烟,证明有氨气。(白色固体)离子色谱法:以稀硫酸作为吸收液采集空气中的氨,使氨在吸收液中转化为铵离子,选用抑制型电导检测器,D ionex IonPac CS10阳离子分析柱,以HCl作为淋洗液,进样体积50 μl,通过测定吸收液中的铵离子来计算空气中氨的浓度.结果:对空气中氨气的采样效率大于98%,铵离子在1~100 mg/L范围内具有良好的线性(r=0.9990),方法精密度高(RSD5%),对铵离子的检出限为0.1 mg/L,最小采样体积为9.5 L;与国家标准方法纳氏试剂分光光度法(GB/T14668)比较,测定结果一致。 [5]衍生物播报编辑联氨联氨(NH2NH2)又称为肼,联氨是一种吸湿性很强、介电常数较高的无色液体,熔点为275 K,沸点为386.5 K。固态时由于氢键的形成·,两岸为联状多聚体。许多盐溶于液态联氨中,所得的溶液具有良好的导电性。联氨可以看作氨分子中的一个氢原子被氨基取代的衍生物。在联氨分子中的每个氮原子都以sp3不等性杂化形成σ键,每个氨上有一对孤对电子。过去一直认为由于氮原子上孤电子对之间的排斥作用,孤电子对应处于反位。最近从联氨分子具有较强的极性(μ=1.85 D)等方面考虑,认为联氨分子应该是顺式结构。 [4]羟氨羟氨(NH2OH)可以看作NH3分子中的一个氢被OH-(羟基)取代的衍生物,羟氨分子中的N和O都是以不等性sp3杂化轨道形成σ键。羟氨是一种无色吸湿性很强的固体,熔点为305.5 K(2.93 kPa),易溶于水和低级醇中。 [4]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000液氨_化工百科
液氨_化工百科
化工百科
首页
产品供应商后台
了解会员服务
登陆
免费注册
搜供应商
搜百科
液氨
液氨(Ammonia)
CAS: 7664-41-7
化学式: H3N
主页 产品无机化工无机碱 液氨
管制品类:危险化学品目录
液氨是无色气体,在低温下可被压缩成液态。以下是液氨的性质、用途、制法和安全信息的介绍:
性质:
1. 液氨具有刺激性气味,呈碱性。
2. 液氨极易挥发,能迅速蒸发成气态。
3. 液氨与水反应会产生热量,因此需要小心处理。
4. 液氨可溶于许多有机溶剂,如醇和醚。
用途:
1. 液氨广泛用于制冷和冷冻设备,如冰箱、冷库以及制冷船舶。
2. 作为工业用气体,液氨常用于制取氨水、硝酸和尿素等化合物。
3. 液氨还用于金属表面处理、橡胶工业和制草药等。
制法:
液氨的制法一般有两种途径,分别是压缩制冷法和吸收制冷法:
1. 压缩制冷法:将氨气压缩,然后通过冷凝来得到液氨。
2. 吸收制冷法:利用氨在水溶液中的可溶性,通过冷凝和蒸发来得到液氨。
安全信息:
1. 液氨具有腐蚀性和刺激性,请戴上防护眼镜、手套、工作衣等必要的防护装备。
2. 避免直接接触皮肤和眼睛,如发生接触,应立即用大量清水冲洗,必要时就医。
3. 避免吸入液氨蒸汽,确保操作区域通风良好。
4. 在储存和运输液氨时,需遵循相关安全规定,避免漏气和泄漏。
5. 在使用液氨时,必须严格遵循操作规程,以确保安全。最后更新:2023-12-21 00:21:33
中文名 液氨英文名 Ammonia别名 氨液氨合成氨无水氨氨标准溶液合成氨,液氨氨水甲醇溶液氨气(液氨)电子级高纯氨液氨(工业用)合成氨,液氨,氨气水质氨(水剂)标样氨水2.0M甲醇溶液氨,7M IN METHANOL英文别名 am-folAmmoniaammonia00Liguid ammoniaLiquid AmmoniaAQUEOUS AMMONIAammoniaanhydrousammonia,anhydrousammonia(anhydrous)Ammonia, anhydrousammonia(non-specificname)Ammonia,2M solution in THFAmmonia,2M solution in 1,4-dioxaneAmmonia Solution Sg 0.91 - ANALYPURAmmonia2M solution in methanolAcroSeal§3Ammonia0.5M solution in 1,4-dioxaneAcroSeal§3CAS 7664-41-7EINECS 231-635-3化学式 H3N分子量 17.03InChI InChI=1/H3N/h1H3密度 1.023g/mLat 25°C熔点 −78°C(lit.)沸点 60°C闪点 52°F水溶性 soluble蒸汽压 8.75 atm ( 21 °C)蒸汽密度 0.6 (vs air)溶解度 与乙醇 (95%) 和水混溶。 酸度系数 38(at 25℃)存储条件 0-6°C稳定性 稳定。吸湿。易燃。与酸、强氧化剂不相容。可能与酸,醛,烯化氧,酰胺,硼,硼卤化物,钙,氯叠氮化物,酒精剧烈反应敏感性 Hygroscopic外观 固体颜色 Colorless气味 Intense pungent odor detectable at 17 ppmMerck 14,492BRN 3587154爆炸极限值 25%暴露限值 TLV-TWA 25 ppm (~18 mg/m3) (ACGIHand MSHA), 50 ppm (OSHA); STEL35 ppm; IDLH 500 ppm (NIOSH).物化性质 无色气体。有强烈的刺激气味。 溶于水、乙醇和乙醇。危险品标志 F - 易燃物品
N - 危害环境的物品
T - 有毒物品
Xn - 有害物品
风险术语 R11 - 高度易燃。
R20 - 吸入有害。
R36/37/38 - 刺激眼睛、呼吸系统和皮肤。
R67 - 蒸汽可能引起困倦和眩晕。
R39/23/24/25 -
R23/24/25 - 吸入、皮肤接触及吞食有毒。
R10 - 易燃。
R50 - 对水生生物有极高毒性。
R34 - 引起灼伤。
R23 - 吸入有毒。
R36 - 刺激眼睛。
R66 - 长期接触可能引起皮肤干裂。
R40 - 少数报道有致癌后果。
R36/37 - 刺激眼睛和呼吸系统。
R19 - 可能生成爆炸性过氧化物。
安全术语 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。
S7 - 保持容器密封。
S45 - 若发生事故或感不适,立即就医(可能的话,出示其标签)。
S36/37/39 - 穿戴适当的防护服、手套和护目镜或面具。
S16 - 远离火源。
S9 - 保持容器置于良好通风处。
S61 - 避免释放至环境中。参考特别说明/安全数据说明书。
S36/37 - 穿戴适当的防护服和手套。
危险品运输编号 UN 1219 3/PG 2WGK Germany 2RTECS BO0875000TSCA Yes海关编号 28141000Hazard Class 3Packing Group II上游原料 氮(高纯) 液氨 焦炭 磷酸 磷酸 氢气 下游产品 亚硫酸氢铵 2,4-二硝基苯胺
液氨 - 性质可信数据无色气体,有强烈的刺激性气味,易被液化成无色液体。相对密度0. 77(液体),熔点- 77.7℃,沸点- 33.5℃,蒸气压(25.7℃)1013kPa,爆炸极限(体积分数)is26~28%(在空气中),13.5%~79%(在氧气中),2.226~72%(在N2 0中),自燃点651℃。在常温下加压即可使其液化,临界温度132.4℃,临界压力11366. 7kPa。溶于水、乙醇、乙醚和有机溶剂。高温分解成氨和氢,有还原作用。在催化剂存在时可被氧化成一氧化碳。
最后更新:2024-01-02 23:10:35液氨 - 制法可信数据主要原料为煤(或焦炭、天然气等)、空气和水。工业化生产氨的过程一般分为造气、脱硫变换、压缩精制和合成等工序。
最后更新:2022-01-01 08:53:28液氨 - 标准可信数据本品含氨(NH3) 应为25. 0 % 〜28. 0 % ( g / g )。
最后更新:2024-01-02 23:10:35液氨 - 性状可信数据
本品为无色的澄清液体;有强烈刺激性的特臭;易挥发;显碱性反应。
本品能与水或乙醇任意混合。
相对密度
本品的相对密度(通则0601)为0. 900〜0. 908。
最后更新:2022-01-01 11:24:20液氨 - 用途可信数据锅炉给水pH值调节剂,氨用来中和给水中的碳酸,提高pH值,减缓给水中二氧化碳的腐蚀。也是锅炉停炉保护剂,对锅炉内有少量存水不能放出的锅炉也有较好的保护效果。
最后更新:2022-01-01 08:53:28液氨 - 鉴别可信数据取本品少量,另用玻璃棒蘸取盐酸,持近本品的液面,即产生白色的浓烟。
最后更新:2022-01-01 11:24:21液氨 - 安全性可信数据有毒l工作人员应做好防护,应贮存在阴凉、通风、干燥的库房中,避免受热,防止日晒,附近严禁烟火。容器密封,不可与酸类物质共贮混运。不宜长久贮存。失火时,可用水、沙土、灭火机扑救。
最后更新:2022-01-01 08:53:29液氨 - 检查可信数据氯化物
取本品约lO g (llm l),置水浴上蒸干,残渣加水20ml溶解后,依法检查(通则0801) ,与标准氯化钠溶液1.0ml制成的对照溶液比较,不得更浓(0.0001 %)。
硫酸盐
取本品约20g(22ml),置水浴上蒸干,残渣加水25ml溶解后,依法检查(通则0802) ,与标准硫酸钾溶液1 .0m l制成的对照液比较,不得更浓(0.0005% )。
碳酸盐
取本品约lO g ( llm l),置具塞试管中,加10ml氢氧化钙试液,摇匀,与0.01%无水碳酸钠溶液10ml用同法制成的对照液比较,不得更浓(0.006% )。
易氧化物
取本品8. 8 m l ,小心加至稀硫酸试液100ml中,冷却至室温,加髙锰酸钾滴定液(0.002mol/L)0. 75ml,静置5 分钟,淡粉红色不得完全消失。
不挥发物
取本品约50g(55ml),置105°C恒重的蒸发皿中,在水浴上蒸干,在105°C干燥1 小时,遗留残渣不得过 lm g。
吡啶与相关物质
取本品,以水为空白,照紫外-可见分光光度法(通则0401),在252nm的波长处测定,吸光度不得过◦. 06。
铁盐
取本品约40g(44ml),置水浴上蒸干,残渣加水25ml溶解后,依法检查(通则0807),与标准铁溶液1.0ml制成的对照液比较,不得更深(0. 000 025% )。
重金属
取本品约20g(22ml),置水浴上蒸干,加盐酸lm l ,再蒸干,残渣中加醋酸盐缓冲液(p H 3 .5 )2m l与水23ml使溶解,依法检查(通则0821第一法),含重金属不得过百万分之一。
最后更新:2022-01-01 11:24:22液氨 - 含量测定可信数据取本品约2ml,置贮有盐酸滴定液(1. Omol/L)50. 0m l并精密称定重量的具塞锥形瓶中,加塞,摇勻,再精密称定,加甲基红指示液2 滴,用氢氧化钠滴定液(l.O m o l/L )滴定,并将滴定的结果用空白试验校正。每lm l盐酸滴定液(1. 0m o l/L )相当于17. 03mg的NH3。
最后更新:2022-01-01 11:24:22液氨 - 类别可信数据药用辅料,碱化剂和p H 值调节剂。
最后更新:2022-01-01 11:24:23液氨 - 贮藏可信数据密封,在30°C以下保存。
最后更新:2022-01-01 11:24:23
查看液氨结构式
化工百科提示:
该产品属于管制类产品-危险化学品,个人不得非法销售或购买。公司或单位需取得相关部门发放的许可证并按法律规定进行登记备案。物流、仓储均需具有相应资质的物流公司和仓储公司,严禁使用快递运输。
厂家联系方式仅供具备采购资质的公司或团体在线下联络时参考使用,产品不在网上销售。
供应商列表
淄博汇宝化工有限公司的联系方式产品名: 液氨手机: 18369984383(微信同号)电子邮件: 2159287631@qq.com上海麦克林生化科技股份有限公司的联系方式产品名: 氨电话: 13918391375/17821173903手机: 13918391375/17821173903电子邮件: wangrui@macklin.cn上海吉至生化科技有限公司的联系方式产品名: 氨溶液电话: 400-900-4166手机: 19602116810电子邮件: 3007523013@qq.com前衍化学科技(武汉)有限公司的联系方式产品名: 氨电话: 13247110337手机: 13247110337电子邮件: 2205437118@qq.com前衍化学科技(武汉)有限公司的联系方式产品名: 氨手机: 13247110337电子邮件: 2205437118@qq.com山东西亚化学有限公司的联系方式产品名: 氨水电话: 400-990-3999手机: 13395399280电子邮件: 861669111@qq.com河北贞田食品添加剂有限公司的联系方式产品名: 液氨电话: 0319-5925599手机: 13373390591电子邮件: 13313091926@163.com浙江杭宇医药科技有限公司的联系方式产品名: 液氨电话: +86 18134193529手机: 18134193529电子邮件: 18134193529@163.com研峰科技的联系方式产品名: 氨甲醇溶液电话: 18519017630手机: 18519017630电子邮件: biz9@infsci.com
淄博汇宝化工有限公司的联系方式产品名: 液氨手机: 18369984383(微信同号)电子邮件: 2159287631@qq.com上海麦克林生化科技股份有限公司的联系方式产品名: 氨电话: 13918391375/17821173903手机: 13918391375/17821173903电子邮件: wangrui@macklin.cn上海吉至生化科技有限公司的联系方式产品名: 氨溶液电话: 400-900-4166手机: 19602116810电子邮件: 3007523013@qq.com前衍化学科技(武汉)有限公司的联系方式产品名: 氨电话: 13247110337手机: 13247110337电子邮件: 2205437118@qq.com前衍化学科技(武汉)有限公司的联系方式产品名: 氨手机: 13247110337电子邮件: 2205437118@qq.com山东西亚化学有限公司的联系方式产品名: 氨水电话: 400-990-3999手机: 13395399280电子邮件: 861669111@qq.com河北贞田食品添加剂有限公司的联系方式产品名: 液氨电话: 0319-5925599手机: 13373390591电子邮件: 13313091926@163.com浙江杭宇医药科技有限公司的联系方式产品名: 液氨电话: +86 18134193529手机: 18134193529电子邮件: 18134193529@163.com研峰科技的联系方式产品名: 氨甲醇溶液电话: 18519017630手机: 18519017630电子邮件: biz9@infsci.com
液氨的上游原料
磷酸 磷酸 氢气
液氨的下游产品
亚硫酸氢铵 2,4-二硝基苯胺
您刚刚浏览过
液氨
你知道吗?
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!
使用化工百科前必读
首页
注册
登录
会员介绍
联系方式
化工百科英文站
Ammonia | Definition & Uses | Britannica
Ammonia | Definition & Uses | Britannica
Search Britannica
Click here to search
Search Britannica
Click here to search
Login
Subscribe
Subscribe
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
On This Day
One Good Fact
Dictionary
New Articles
History & Society
Lifestyles & Social Issues
Philosophy & Religion
Politics, Law & Government
World History
Science & Tech
Health & Medicine
Science
Technology
Biographies
Browse Biographies
Animals & Nature
Birds, Reptiles & Other Vertebrates
Bugs, Mollusks & Other Invertebrates
Environment
Fossils & Geologic Time
Mammals
Plants
Geography & Travel
Geography & Travel
Arts & Culture
Entertainment & Pop Culture
Literature
Sports & Recreation
Visual Arts
Companions
Demystified
Image Galleries
Infographics
Lists
Podcasts
Spotlights
Summaries
The Forum
Top Questions
#WTFact
100 Women
Britannica Kids
Saving Earth
Space Next 50
Student Center
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
ammonia
Table of Contents
ammonia
Table of Contents
IntroductionUses of ammoniaPreparation of ammoniaPhysical properties of ammoniaChemical reactivity of ammoniaDerivatives of ammoniaHydrazineHydroxylamine
References & Edit History
Related Topics
Images & Videos
For Students
ammonia summary
Discover
America’s 5 Most Notorious Cold Cases (Including One You May Have Thought Was Already Solved)
7 of the World’s Deadliest Shipwrecks
Inventors and Inventions of the Industrial Revolution
7 of History's Most Notorious Serial Killers
How Did Helen Keller Fly a Plane?
The Seven Sacraments of the Roman Catholic church
Did Marie-Antoinette Really Say “Let Them Eat Cake”?
Home
Science
Chemistry
Science & Tech
ammonia
chemical compound
Actions
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/science/ammonia
Give Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
National Library of Medicine - Biochemistry, Ammonia
Chemistry LibreTexts - NH3
United States Enviromental Protection Agency - Ammonia
American Chemical Society - Ammonia
Cleveland Clinic - Ammonia Levels
University of Bristol - Department of Chemistry - Ammonia
Science - Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon
The Essential Chemical Industry Online - Ammonia
Please select which sections you would like to print:
Table Of Contents
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/science/ammonia
Feedback
External Websites
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Feedback Type
Select a type (Required)
Factual Correction
Spelling/Grammar Correction
Link Correction
Additional Information
Other
Your Feedback
Submit Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
National Library of Medicine - Biochemistry, Ammonia
Chemistry LibreTexts - NH3
United States Enviromental Protection Agency - Ammonia
American Chemical Society - Ammonia
Cleveland Clinic - Ammonia Levels
University of Bristol - Department of Chemistry - Ammonia
Science - Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon
The Essential Chemical Industry Online - Ammonia
Written by
Steven S. Zumdahl
Professor and Associate Head, Department of Chemistry, University of Illinois at Urbana-Champaign. Author of Chemical Principles and many others.
Steven S. Zumdahl
Fact-checked by
The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica
Last Updated:
Mar 2, 2024
•
Article History
Table of Contents
ammonia
See all media
Category:
Science & Tech
Key People:
Joseph Priestley
Fritz Haber
Gerhard Ertl
(Show more)
Related Topics:
Haber-Bosch process
ammonium nitrate
biogenic gas
ammonium hydroxide
anhydrous ammonia
(Show more)
On the Web:
Science - Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon (Feb. 15, 2024)
(Show more)
See all related content →
Recent News
Feb. 27, 2024, 4:00 AM ET (BBC)
Why firms are racing to produce green ammonia
ammonia (NH3), colourless, pungent gas composed of nitrogen and hydrogen. It is the simplest stable compound of these elements and serves as a starting material for the production of many commercially important nitrogen compounds.
Uses of ammonia
The major use of ammonia is as a fertilizer. In the United States, it is usually applied directly to the soil from tanks containing the liquefied gas. The ammonia can also be in the form of ammonium salts, such as ammonium nitrate, NH4NO3, ammonium sulfate, (NH4)2SO4, and various ammonium phosphates. Urea, (H2N)2C=O, is the most commonly used source of nitrogen for fertilizer worldwide. Ammonia is also used in the manufacture of commercial explosives (e.g., trinitrotoluene [TNT], nitroglycerin, and nitrocellulose).
In the textile industry, ammonia is used in the manufacture of synthetic fibres, such as nylon and rayon. In addition, it is employed in the dyeing and scouring of cotton, wool, and silk. Ammonia serves as a catalyst in the production of some synthetic resins. More important, it neutralizes acidic by-products of petroleum refining, and in the rubber industry it prevents the coagulation of raw latex during transportation from plantation to factory. Ammonia also finds application in both the ammonia-soda process (also called the Solvay process), a widely used method for producing soda ash, and the Ostwald process, a method for converting ammonia into nitric acid.
Ammonia is used in various metallurgical processes, including the nitriding of alloy sheets to harden their surfaces. Because ammonia can be decomposed easily to yield hydrogen, it is a convenient portable source of atomic hydrogen for welding. In addition, ammonia can absorb substantial amounts of heat from its surroundings (i.e., one gram of ammonia absorbs 327 calories of heat), which makes it useful as a coolant in refrigeration and air-conditioning equipment. Finally, among its minor uses is inclusion in certain household cleansing agents.
Preparation of ammonia
Pure ammonia was first prepared by English physical scientist Joseph Priestley in 1774, and its exact composition was determined by French chemist Claude-Louis Berthollet in 1785. Ammonia is consistently among the top five chemicals produced in the United States. The chief commercial method of producing ammonia is by the Haber-Bosch process, which involves the direct reaction of elemental hydrogen and elemental nitrogen.
N2 + 3H2 → 2NH3
This reaction requires the use of a catalyst, high pressure (100–1,000 atmospheres), and elevated temperature (400–550 °C [750–1020 °F]). Actually, the equilibrium between the elements and ammonia favours the formation of ammonia at low temperature, but high temperature is required to achieve a satisfactory rate of ammonia formation. Several different catalysts can be used. Normally the catalyst is iron containing iron oxide. However, both magnesium oxide on aluminum oxide that has been activated by alkali metal oxides and ruthenium on carbon have been employed as catalysts. In the laboratory, ammonia is best synthesized by the hydrolysis of a metal nitride.
Mg3N2 + 6H2O → 2NH3 + 3Mg(OH)2
Get a Britannica Premium subscription and gain access to exclusive content.
Subscribe Now
Physical properties of ammonia
Ammonia is a colourless gas with a sharp, penetrating odour. Its boiling point is −33.35 °C (−28.03 °F), and its freezing point is −77.7 °C (−107.8 °F). It has a high heat of vaporization (23.3 kilojoules per mole at its boiling point) and can be handled as a liquid in thermally insulated containers in the laboratory. (The heat of vaporization of a substance is the number of kilojoules needed to vaporize one mole of the substance with no change in temperature.) The ammonia molecule has a trigonal pyramidal shape with the three hydrogen atoms and an unshared pair of electrons attached to the nitrogen atom. It is a polar molecule and is highly associated because of strong intermolecular hydrogen bonding. The dielectric constant of ammonia (22 at −34 °C [−29 °F]) is lower than that of water (81 at 25 °C [77 °F]), so it is a better solvent for organic materials. However, it is still high enough to allow ammonia to act as a moderately good ionizing solvent. Ammonia also self-ionizes, although less so than does water.
2NH3 ⇌ NH4+ + NH2−
Chemical reactivity of ammonia
The combustion of ammonia proceeds with difficulty but yields nitrogen gas and water.
4NH3 + 3O2 + heat → 2N2 + 6H2O
However, with the use of a catalyst and under the correct conditions of temperature, ammonia reacts with oxygen to produce nitric oxide, NO, which is oxidized to nitrogen dioxide, NO2, and is used in the industrial synthesis of nitric acid.
Ammonia readily dissolves in water with the liberation of heat.
NH3 + H2O ⇌ NH4+ + OH−
These aqueous solutions of ammonia are basic and are sometimes called solutions of ammonium hydroxide (NH4OH). The equilibrium, however, is such that a 1.0-molar solution of NH3 provides only 4.2 millimoles of hydroxide ion. The hydrates NH3 · H2O, 2NH3 · H2O, and NH3 · 2H2O exist and have been shown to consist of ammonia and water molecules linked by intermolecular hydrogen bonds.
Liquid ammonia is used extensively as a nonaqueous solvent. The alkali metals as well as the heavier alkaline-earth metals and even some inner transition metals dissolve in liquid ammonia, producing blue solutions. Physical measurements, including electrical-conductivity studies, provide evidence that this blue colour and electrical current are due to the solvated electron.
metal (dispersed) ⇌ metal(NH3)x ⇌ M+(NH3)x + e−(NH3)y
These solutions are excellent sources of electrons for reducing other chemical species. As the concentration of dissolved metal increases, the solution becomes a deeper blue in colour and finally changes to a copper-coloured solution with a metallic lustre. The electrical conductivity decreases, and there is evidence that the solvated electrons associate to form electron pairs.
2e−(NH3)y ⇌ e2(NH3)y
Most ammonium salts also readily dissolve in liquid ammonia.
AMMONIA中文(简体)翻译:剑桥词典
AMMONIA中文(简体)翻译:剑桥词典
词典
翻译
语法
同义词词典
+Plus
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录
/
注册
中文 (简体)
查找
查找
英语-中文(简体)
ammonia 在英语-中文(简体)词典中的翻译
ammonianoun [ U ] uk
Your browser doesn't support HTML5 audio
/əˈməʊ.ni.ə/ us
Your browser doesn't support HTML5 audio
/əˈmoʊ.ni.ə/
Add to word list
Add to word list
a gas with a strong, unpleasant smell used in making explosives, fertilizers (= substances that help plants grow), and some cleaning products
氨;氨水
(ammonia在剑桥英语-中文(简体)词典的翻译 © Cambridge University Press)
ammonia的例句
ammonia
Dietary manipulation in dairy cattle: laboratory experiments to assess the influence on ammonia emissions.
来自 Cambridge English Corpus
They found evidence of ammonia emanating from the tick faeces.
来自 Cambridge English Corpus
In our studies, however, only a small increase in the number of macrophages in infected fish exposed to ammonia was noted.
来自 Cambridge English Corpus
If the species are very active, they may be touched with a camel's hair brush moistened with chloroform or ammonia.
来自 Cambridge English Corpus
The results obtained in this case were precisely similar to those obtained with ammonia.
来自 Cambridge English Corpus
The ticks proved very susceptible to the effects of the vapours of ammonia and clove oil respectively.
来自 Cambridge English Corpus
This also appeared to be closely related to ammonia nitrogen.
来自 Cambridge English Corpus
So too, on much colder planets an ammonia based system may be truly viable.
来自 Cambridge English Corpus
示例中的观点不代表剑桥词典编辑、剑桥大学出版社和其许可证颁发者的观点。
B1
ammonia的翻译
中文(繁体)
氨, 氨水…
查看更多内容
西班牙语
amoníaco, amoniaco…
查看更多内容
葡萄牙语
amoníaco, amônia…
查看更多内容
更多语言
土耳其语
法语
in Dutch
捷克语
丹麦语
印尼语
泰语
越南语
波兰语
in Swedish
马来语
德语
挪威语
in Ukrainian
俄语
temizleme maddeleri içinde kullanılan keskin kokulu sıvı ya da gaz, amoniya, amonyak…
查看更多内容
ammoniac, ammoniaque…
查看更多内容
ammoniak…
查看更多内容
amoniak, čpavek…
查看更多内容
ammoniak, salmiakspiritus…
查看更多内容
amoniak…
查看更多内容
ก๊าซแอมโมเนีย, สารละลายแอมโมเนีย…
查看更多内容
a-mô-ni-ăc, dung dịch amoniac…
查看更多内容
amoniak…
查看更多内容
ammoniak…
查看更多内容
ammonia…
查看更多内容
das Ammoniak, der Salmiakgeist…
查看更多内容
ammoniakk, salmiakk…
查看更多内容
аміак, нашатир…
查看更多内容
аммиак…
查看更多内容
需要一个翻译器吗?
获得快速、免费的翻译!
翻译器工具
ammonia的发音是什么?
在英语词典中查看 ammonia 的释义
浏览
amla
Amman
ammeter
ammo
ammonia
ammonite
ammonium
ammonium hydroxide
ammonium nitrate
“每日一词”
healthspan
UK
Your browser doesn't support HTML5 audio
/ˈhelθ.spæn/
US
Your browser doesn't support HTML5 audio
/ˈhelθ.spæn/
the number of years that someone lives or can expect to live in reasonably good health
关于这个
博客
Forget doing it or forget to do it? Avoiding common mistakes with verb patterns (2)
March 06, 2024
查看更多
新词
stochastic parrot
March 04, 2024
查看更多
已添加至 list
回到页面顶端
内容
英语-中文(简体)例句翻译
©剑桥大学出版社与评估2024
学习
学习
学习
新词
帮助
纸质书出版
Word of the Year 2021
Word of the Year 2022
Word of the Year 2023
开发
开发
开发
词典API
双击查看
搜索Widgets
执照数据
关于
关于
关于
无障碍阅读
剑桥英语教学
剑桥大学出版社与评估
授权管理
Cookies与隐私保护
语料库
使用条款
京ICP备14002226号-2
©剑桥大学出版社与评估2024
剑桥词典+Plus
我的主页
+Plus 帮助
退出
词典
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
翻译
语法
同义词词典
Pronunciation
剑桥词典+Plus
Shop
剑桥词典+Plus
我的主页
+Plus 帮助
退出
登录 /
注册
中文 (简体)
Change
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
中文 (简体)
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
关注我们
选择一本词典
最近的词和建议
定义
清晰解释自然的书面和口头英语
英语
学习词典
基础英式英语
基础美式英语
语法与同义词词典
对自然书面和口头英语用法的解释
英语语法
同义词词典
Pronunciation
British and American pronunciations with audio
English Pronunciation
翻译
点击箭头改变翻译方向。
双语词典
英语-中文(简体)
Chinese (Simplified)–English
英语-中文(繁体)
Chinese (Traditional)–English
英语-荷兰语
荷兰语-英语
英语-法语
法语-英语
英语-德语
德语-英语
英语-印尼语
印尼语-英语
英语-意大利语
意大利语-英语
英语-日语
日语-英语
英语-挪威语
挪威语-英语
英语-波兰语
波兰语-英语
英语-葡萄牙语
葡萄牙语-英语
英语-西班牙语
西班牙语-英语
English–Swedish
Swedish–English
半双语词典
英语-阿拉伯语
英语-孟加拉语
英语-加泰罗尼亚语
英语-捷克语
英语-丹麦语
English–Gujarati
英语-印地语
英语-韩语
英语-马来语
英语-马拉地语
英语-俄语
English–Tamil
English–Telugu
英语-泰语
英语-土耳其语
英语-乌克兰语
English–Urdu
英语-越南语
词典+Plus
词汇表
选择语言
中文 (简体)
English (UK)
English (US)
Español
Русский
Português
Deutsch
Français
Italiano
正體中文 (繁體)
Polski
한국어
Türkçe
日本語
Tiếng Việt
हिंदी
தமிழ்
తెలుగు
内容
英语-中文(简体)
Noun
例句
Translations
语法
所有翻译
我的词汇表
把ammonia添加到下面的一个词汇表中,或者创建一个新词汇表。
更多词汇表
前往词汇表
对该例句有想法吗?
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
例句中的单词与输入词条不匹配。
该例句含有令人反感的内容。
取消
提交
Ammonia | NH3 | CID 222 - PubChem
Ammonia | NH3 | CID 222 - PubChem
JavaScript is required...
Please enable Javascript in order to use PubChem website.
ammonia_百度百科
nia_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10ammonia播报讨论上传视频英语单词ammonia是一个英语单词,名词,作名词时意为“[无化] 氨,阿摩尼亚”。外文名ammonia词 性名词目录1单词发音2短语搭配3双语例句单词发音播报编辑英[əˈməʊniə]美[əˈmoʊniə] [1]短语搭配播报编辑ammonia nitrogen氨氮;氨型氮,氨基氮ammonia plant氨植物ammonia synthesis氨合成;氨合成法liquid ammonia液氨ammonia water氨水 [1]双语例句播报编辑It smells like gas and ammonia mixed together.闻上去像是汽油和氨水的混合物。Because there are water exists, ammonia and oil acid oxide role will generate precipitation.因为有水分存在时,氨与油的酸性氧化物作用会生成沉淀。However, as opiates are black, he observed the appearance of tiny white crystals, after mixing them with ammonia.然而,鸦片是黑的,在混合了阿摩尼亚之后,他却看到了有白色的小结晶物出现。 [1]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000Ammonia history in the making | Nature Catalysis
Ammonia history in the making | Nature Catalysis
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Subscribe
Sign up for alerts
RSS feed
nature
nature catalysis
news & views
article
News & Views
Published: 21 September 2021
HETEROGENEOUS CATALYSISAmmonia history in the making
Jianping Guo
ORCID: orcid.org/0000-0002-0229-85551 & Ping Chen
ORCID: orcid.org/0000-0002-0625-06391
Nature Catalysis
volume 4, pages 734–735 (2021)Cite this article
3362 Accesses
21 Citations
7 Altmetric
Metrics details
Subjects
Heterogeneous catalysisHistory of chemistrySurface chemistry
The Haber–Bosch process was introduced at the beginning of the twentieth century; however, its mechanism remained controversial for many years. Thus, a comprehensive mechanistic picture was provided in the eighties.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: Surface science studies disclose the mechanism of N2 conversion.
ReferencesEmmett, P. H. in The Physical Basis for Heterogeneous Catalysis (eds Drauglis, E. & Jaffee, R. I.) 3–34 (Plenum Press, 1975).Ertl, G. J. Vac. Sci. Technol. A 1, 1247–1253 (1983).Article
CAS
Google Scholar
Spencer, N. D., Schoonmaker, R. C. & Somorjai, G. A. J. Catal. 74, 129–135 (1982).Article
CAS
Google Scholar
Stoltze, P. & Nørskov, J. K. Phys. Rev. Lett. 55, 2502–2505 (1985).Article
CAS
Google Scholar
Kalz, K. F. et al. ChemCatChem 9, 17–29 (2017).Article
CAS
Google Scholar
Wang, P. et al. Nat. Chem. 9, 64–70 (2017).Article
CAS
Google Scholar
Westhead, O., Jervis, R. & Stephens, I. E. L. Science 372, 1149–1150 (2021).Article
CAS
Google Scholar
Lv, Z. J. et al. Natl Sci. Rev. 7, 1564–1583 (2020).Article
CAS
Google Scholar
Download referencesAuthor informationAuthors and AffiliationsDalian Institute of Chemical Physics, State Key Laboratory of Catalysis, Chinese Academy of Sciences, Dalian, ChinaJianping Guo & Ping ChenAuthorsJianping GuoView author publicationsYou can also search for this author in
PubMed Google ScholarPing ChenView author publicationsYou can also search for this author in
PubMed Google ScholarCorresponding authorCorrespondence to
Ping Chen.Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissionsReprints and permissionsAbout this articleCite this articleGuo, J., Chen, P. Ammonia history in the making.
Nat Catal 4, 734–735 (2021). https://doi.org/10.1038/s41929-021-00676-0Download citationPublished: 21 September 2021Issue Date: September 2021DOI: https://doi.org/10.1038/s41929-021-00676-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Preparation of highly dispersed Pd/SBA-15 catalysts for dodecahydro-N-ethylcarbazole dehydrogenation reaction by ion exchange-glow discharge
Zhaolu FengYindong WangXuefeng Bai
Environmental Science and Pollution Research (2022)
Access through your institution
Buy or subscribe
Access through your institution
Change institution
Buy or subscribe
Associated content
Series
Retro News & Views
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Videos
Current issue
Collections
Follow us on Twitter
Subscribe
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
Journal Metrics
About the Editors
Research Cross-Journal Editorial Team
Reviews Cross-Journal Editorial Team
Editorial Values Statement
Editorial Policies
Content Types
Contact
Our publishing models
Publish with us
Submission Guidelines
For Reviewers
Language editing services
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Catalysis (Nat Catal)
ISSN 2520-1158 (online)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
Properties and uses of ammonia | Britannica
Properties and uses of ammonia | Britannica
Search Britannica
Click here to search
Search Britannica
Click here to search
Login
Subscribe
Subscribe
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
On This Day
One Good Fact
Dictionary
New Articles
History & Society
Lifestyles & Social Issues
Philosophy & Religion
Politics, Law & Government
World History
Science & Tech
Health & Medicine
Science
Technology
Biographies
Browse Biographies
Animals & Nature
Birds, Reptiles & Other Vertebrates
Bugs, Mollusks & Other Invertebrates
Environment
Fossils & Geologic Time
Mammals
Plants
Geography & Travel
Geography & Travel
Arts & Culture
Entertainment & Pop Culture
Literature
Sports & Recreation
Visual Arts
Companions
Demystified
Image Galleries
Infographics
Lists
Podcasts
Spotlights
Summaries
The Forum
Top Questions
#WTFact
100 Women
Britannica Kids
Saving Earth
Space Next 50
Student Center
Home
Games & Quizzes
History & Society
Science & Tech
Biographies
Animals & Nature
Geography & Travel
Arts & Culture
Money
Videos
ammonia
Table of Contents
ammonia
Related Summaries
Fritz Haber Summary
Joseph Priestley Summary
Discover
How Fast Is the World’s Fastest Human?
Inventors and Inventions of the Industrial Revolution
9 Things You Might Not Know About Adolf Hitler
7 Surprising Uses for Mummies
7 of History's Most Notorious Serial Killers
Why Are U.S. Elections Held on Tuesdays?
The Seven Sacraments of the Roman Catholic church
Home
Science
Chemistry
ammonia Article
ammonia summary
Actions
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/summary/ammonia
Learn about the properties of ammonia and its uses, especially as a fertilizer
Cite
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.
Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
MLA
APA
Chicago Manual of Style
Copy Citation
Share
Share
Share to social media
URL
https://www.britannica.com/summary/ammonia
Written and fact-checked by
The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica
Below is the article summary. For the full article, see ammonia.
Ammonia and amines have a slightly flattened trigonal pyramidal shape with a lone pair of electrons above the nitrogen. In quaternary ammonium ions, this area is occupied by a fourth substituent.ammonia, Colourless, pungent gas composed of nitrogen and hydrogen, chemical formula NH3. Easily liquefied by compression or cooling for use in refrigerating and air-conditioning equipment, it is manufactured in huge quantities. Ammonia is made by the Haber-Bosch process (see Fritz Haber). Its major use is as a fertilizer, applied directly to soil from tanks of the liquefied gas. Also employed as fertilizers are salts of ammonia, including ammonium phosphate and ammonium nitrate (the latter used in high explosives as well). Ammonia has many other industrial uses as a raw material, catalyst, and alkali. It dissolves readily in water to form ammonium hydroxide, an alkaline solution (see base) familiar as a household cleaner.
Fritz Haber Summary
Fritz Haber German physical chemist and winner of the 1918 Nobel Prize for Chemistry for his successful work on nitrogen fixation. The Haber-Bosch process combined nitrogen and hydrogen to form ammonia in industrial quantities for production of fertilizer and munitions. Haber is also well known for
Joseph Priestley Summary
Joseph Priestley English clergyman, political theorist, and physical scientist whose work contributed to advances in liberal political and religious thought and in experimental chemistry. He is best remembered for his contribution to the chemistry of gases. Priestley was born into a family of
How a century of ammonia synthesis changed the world | Nature Geoscience
How a century of ammonia synthesis changed the world | Nature Geoscience
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Subscribe
Sign up for alerts
RSS feed
nature
nature geoscience
features
article
Feature
Published: 28 September 2008
How a century of ammonia synthesis changed the world
Jan Willem Erisman1, Mark A. Sutton2, James Galloway3, Zbigniew Klimont4 & …Wilfried Winiwarter4,5 Show authors
Nature Geoscience
volume 1, pages 636–639 (2008)Cite this article
39k Accesses
2679 Citations
816 Altmetric
Metrics details
On 13 October 1908, Fritz Haber filed his patent on the “synthesis of ammonia from its elements” for which he was later awarded the 1918 Nobel Prize in Chemistry. A hundred years on we live in a world transformed by and highly dependent upon Haber–Bosch nitrogen.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
Breeding progress of nitrogen use efficiency of cereal crops, winter oilseed rape and peas in long-term variety trials
F. Laidig, T. Feike … H. P. Piepho
Theoretical and Applied Genetics
Open Access
08 February 2024
Potential and electric double-layer effect in electrocatalytic urea synthesis
Qian Wu, Chencheng Dai … Zhichuan J. Xu
Nature Communications
Open Access
06 February 2024
Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia
Shilong Chen, Jelena Jelic … Malte Behrens
Nature Communications
Open Access
29 January 2024
Access options
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Subscribe to this journalReceive 12 print issues and online access251,40 € per yearonly 20,95 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Figure 1: Trends in human population and nitrogen use throughout the twentieth century.Figure 2: Global nitrogen fertilizer consumption scenarios (left) and the impact of individual drivers on 2100 consumption (right).
ReferencesHaber, F. The Synthesis of Ammonia from its Elements Nobel Lecture (1920); available at www.nobelprize.org/nobel_prizes/chemistry/laureates/1918/haber-lecture.pdf.Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch and the Transformation of World Food Production (MIT Press, Cambridge, Massachusetts, 2001).
Google Scholar
Erisman, J. W., Bleeker, A., Galloway, J. N. & Sutton, M. A Environ. Pollut. 150, 140–149 (2007).Article
Google Scholar
Stoltzenberg, D. Fritz Haber: Chemist, Nobel Laureate, German, Jew. (Chemical Heritage Press, Philadelphia, 2004)
Google Scholar
White, M. Historical Atlas of the Twentieth Century (2003); available at <http://users.erols.com/mwhite28/warstat1.htm#WW1>.
Google Scholar
Smil, V. Ambio 31, 126–131 (2002).Article
Google Scholar
Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. Agron. J. 97, 1–6 (2005).Article
Google Scholar
The State of Food Insecurity in the World (Food and Agriculture Organization of the United Nations, Rome, Italy, 2006).Biofuels: Is the Cure Worse Than the Disease? (OECD Paris, France, 2007).Galloway, J. N. et al. Science 320, 889–892 (2008).Article
Google Scholar
Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing (UNEP, WHRC, Paris, 2007).Sustainable Management of the Nitrogen Cycle in Agriculture and Mitigation of Reactive Nitrogen Side Effects (International Fertilizer Association, Paris, France, 2007).Tilman, D., Cassman, G. K., Matson, P. A., Naylor, R. & Polasky, S. Nature 418, 671–677 (2002).Article
Google Scholar
Galloway, J. N. et al. Biogeochemistry 70, 153–226 (2004).Article
Google Scholar
Galloway, J. N. et al. Bioscience 53, 341–356 (2003).Article
Google Scholar
Gruber, N. & Galloway, J. N. Nature 451, 293–296 (2008).Article
Google Scholar
Magnani, F. et al. Nature 447, 848–851 (2007).Article
Google Scholar
de Vries, W. et al. Nature 451, E1–E3 (2008).Article
Google Scholar
Sutton M. A. et al. Glob. Change Biol. doi:10.1111/j.1365–2486.2008.01636.x (2008).Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Nature Geosci. 1, 430–437 (2008).Article
Google Scholar
Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. Atmos. Chem. Phys. 8, 389–395 (2008).Article
Google Scholar
Sutton, M. A. et al. Environ. Pollut. 150, 125–139 (2007).Article
Google Scholar
Nakicenovic, N. et al. Special Report on Emissions Scenarios. Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, UK, 2000).
Google Scholar
UN Department of Economic and Social Affairs. World population to 2300 (United Nations Publications, New York, 2004)Lutz, W., Sanderson, W. & Scherbov, S. Nature 451, 716–719 (2008).Article
Google Scholar
Fertilizer Requirements in 2015 and 2030 (FAO, Rome, 2000).Tilman, D. et al. Science 292, 281–284 (2001).Article
Google Scholar
Tubiello, F. N. & Fischer G. Technol. Forecast Soc. 74, 1030–1056 (2007).Article
Google Scholar
Download referencesAcknowledgementsWe acknowledge financing from the European Commission for the NitroEurope Integrated Project, the European Science Foundation for the NinE programme and the COST programme (European Cooperation in the field of Scientific and Technical Research) for COST 729. This article was prepared as a contribution to the International Nitrogen Initiative and the Task Force on Reactive Nitrogen of the United Nations Economic Commission for Europe.Author informationAuthors and AffiliationsEnergy Research Center of the Netherlands, ECN, PO Box 1, ZG Petten, 1755, the NetherlandsJan Willem ErismanCentre for Ecology and Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB, Midlothian, UKMark A. SuttonEnvironmental Sciences, University of Virginia, PO Box 400123, 291 McCormick Rd, Charlottesville, 22904, Virginia, USAJames GallowayInternational Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg, A-2361, AustriaZbigniew Klimont & Wilfried WiniwarterAustrian Research Centers, Donau-City Str. 1, Vienna, A-1220, AustriaWilfried WiniwarterAuthorsJan Willem ErismanView author publicationsYou can also search for this author in
PubMed Google ScholarMark A. SuttonView author publicationsYou can also search for this author in
PubMed Google ScholarJames GallowayView author publicationsYou can also search for this author in
PubMed Google ScholarZbigniew KlimontView author publicationsYou can also search for this author in
PubMed Google ScholarWilfried WiniwarterView author publicationsYou can also search for this author in
PubMed Google ScholarCorresponding authorCorrespondence to
Jan Willem Erisman.Rights and permissionsReprints and permissionsAbout this articleCite this articleErisman, J., Sutton, M., Galloway, J. et al. How a century of ammonia synthesis changed the world.
Nature Geosci 1, 636–639 (2008). https://doi.org/10.1038/ngeo325Download citationPublished: 28 September 2008Issue Date: October 2008DOI: https://doi.org/10.1038/ngeo325Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Directly observing catalytic chemistry in the Haber–Bosch process
Nature (2024)
Potential and electric double-layer effect in electrocatalytic urea synthesis
Qian WuChencheng DaiZhichuan J. Xu
Nature Communications (2024)
Decreasing resilience of China’s coupled nitrogen–phosphorus cycling network requires urgent action
Zimeng LuoYadong YuShanying Hu
Nature Food (2024)
Managing urban development could halve nitrogen pollution in China
Ouping DengSitong WangBaojing Gu
Nature Communications (2024)
Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia
Shilong ChenJelena JelicMalte Behrens
Nature Communications (2024)
Access through your institution
Buy or subscribe
Access through your institution
Change institution
Buy or subscribe
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Current issue
Collections
Follow us on Twitter
Subscribe
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
Journal Metrics
About the Editors
Our publishing models
Editorial Values Statement
Editorial Policies
Content Types
Web Feeds
Press Releases
Contact
Research Cross-Journal Editorial Team
Reviews Cross-Journal Editorial Team
Publish with us
Submission Guidelines
For Reviewers
Language editing services
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Geoscience (Nat. Geosci.)
ISSN 1752-0908 (online)
ISSN 1752-0894 (print)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
Page restricted | ScienceDirect
Page restricted | ScienceDirect
Your Browser is out of date.
Update your browser to view ScienceDirect.
View recommended browsers.
Request details:
Request ID: 8613be8d0cc01096-HKG
IP: 49.157.13.121
UTC time: 2024-03-08T15:09:05+00:00
Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36
About ScienceDirect
Shopping cart
Contact and support
Terms and conditions
Privacy policy
Cookies are used by this site. By continuing you agree to the use of cookies.
Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.